Oscillation results for a fractional order dynamic equation on time scales with conformable fractional derivative
نویسندگان
چکیده
منابع مشابه
Conformable fractional Dirac system on time scales
We study the conformable fractional (CF) Dirac system with separated boundary conditions on an arbitrary time scale [Formula: see text]. Then we extend some basic spectral properties of the classical Dirac system to the CF case. Eventually, some asymptotic estimates for the eigenfunction of the CF Dirac eigenvalue problem are obtained on [Formula: see text]. So, we provide a constructive proced...
متن کاملA conformable fractional calculus on arbitrary time scales
Fractional calculus; Conformable operators; Calculus on time scales Abstract A conformable time-scale fractional calculus of order a 2 0; 1 is introduced. The basic tools for fractional differentiation and fractional integration are then developed. The Hilger timescale calculus is obtained as a particular case, by choosing a 1⁄4 1. a 2015 The Authors. Production and hosting by Elsevier B.V. on ...
متن کاملExistence results for hybrid fractional differential equations with Hilfer fractional derivative
This paper investigates the solvability, existence and uniqueness of solutions for a class of nonlinear fractional hybrid differential equations with Hilfer fractional derivative in a weighted normed space. The main result is proved by means of a fixed point theorem due to Dhage. An example to illustrate the results is included.
متن کاملFractional Ince equation with a Riemann-Liouville fractional derivative
We extend the classical treatment of the Ince equation to include the effect of a fractional derivative term of order a > 0 and amplitude c. A Fourier expansion is used to determine the eigenvalue curves að Þ in function of the parameter , the stability domains, and the periodic stable solutions of the fractional Ince equation. Two important observations are the detachment of the eigenvalue cur...
متن کاملA numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2018
ISSN: 1687-1847
DOI: 10.1186/s13662-018-1643-6